

The Terabyte Analysis Machine Project

The Distance Machine: Performance Report
James Annis, Gabriele Garzoglio, Chris Stoughton (Fermilab)

Koen Holtman (Caltech), Peter Kuntz (JHU)

Abstract: The Terabyte Analysis Machine Project is developing hardware and software to analyze
Terabyte scale datasets. The Distance Machine framework provides facilities to flexibly interface
application specific indexing and partitioning algorithms to large scientific databases.

Overview
The Sloan Digital Sky Survey is the first of the new generation of large data volume sky surveys

that will generate tens of Terabytes of images and put billions objects into catalogs. To deal with the
analysis of Terabyte scale SDSS data sets, we are converging on Datawolf design concepts: if
Beowulfs are clusters optimized for efficient message passing parallel processing, Datawolves are
clusters optimized for both high-I/O-rate scans through large data sets and for bringing high compute
power to bear on large datasets. The datawolf design necessarily involves sophisticated database
software and multidimensional search algorithms. Our prototype datawolf is the Terabyte Analysis
Machine [1], a cluster of dual CPU Linux boxes, with large amounts of memory and local disk and
access to a Terabyte of raid disk via a SAN (a fibre channel network and Global File System), hosting
a copy of the SDSS database SX [2]

We report on the analysis engine framework. The main idea is to apply to specific science problems
sophisticated computer science algorithms. Since the interesting astronomy questions often devolve to
the act of measuring the distance from one object to every other object, for all objects, we named the
framework the Distance Machine. At its heart are algorithm libraries. We aim to make it
straightforward for a scientist to insert an algorithm library. Our prototype analysis is a search for
clusters of galaxies, and we chose as the algorithm the determination of the kth nearest neighbors. We
modified and extended an existing library, ANN (Approximate Nearest Neighbors [3]), which
provides methods to find in memory the kth nearest. The central algorithm of ANN is the kd-tree.

The prototype is a layer of middleware between the SX and the user: it extracts the subset of useful
objects from SX, builds a persistent kd-tree in Objectivity using the kth nearest neighbor algorithms,
and presents server-client based CORBA interface to the science analysis code. Transparent access to
the large database embodied dataset is granted by embedding the Objectivity reference to each data
object within a wrapper, a wrapper whose standard array operators are overloaded. A vector of
wrappers can be effectively treated as a vector of pointers to memory: this approach not only allows
almost immediate extension of most existing standalone analysis applications to large Objectivity
managed datasets, but also enables new applications to use the re-indexing and re-partitioning features
of the framework to increase the efficiency of the data access.

Building and searching the tree
First, ANN/Objectivity loads each objectivity data reference into a vector of wrappers whose role it

is to overload the standard array operators. For our database configuration (1 container per database,
max test database size 200 Megabytes, default ooinit() parameters, object size 250 bytes) this takes 7
µs/object. Then the user provided definition of the parameter space (schema + overloading rule for
operator[]) is used to build in memory a tree structure on the data. At each node of the tree (hyper-
cubes in the parameter space) summary information like node boundaries are maintained. Pointers to
the data wrappers are stored in the leaf nodes. The tree structure can be saved in a text format for
future retrieval: for our system, the retrieval time is of the order of 10 µs/object, while building the
tree is a CPU intensive operation of the order of fraction of ms/object. The data agree with the
expected O(n log(n)) complexity of the algorithm. The search for a NN is made extremely quick using
the summary meta-data maintained in the nodes of the tree. Fig.1 shows a comparison between the
standard O(n2) algorithm and the tree based algorithms that ANN implements.

Search time

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Num Objs

T
im

e/
O

bj
 (

m
s) kd std kd pri

bd std bd pri
bf std

Bucket size = 10

Fig 1: Comparison between the search time

of the standard O(n2) NN algorithm (bf std)
and the tree based ones, kd-tree and bd (box
decompositon) tree. Two different search
algorithms are used for the trees: std and pri
(priority queue).

Search time

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0.E+00 2.E+06 4.E+06 6.E+06 8.E+06
Num Objs

T
im

e/
O

bj
 (

m
s)

T Non-reclustered DB
T Reclustered DB
T recl. / T non-recl.

T
 r

ec
l.

/ T
 n

on
-r

ec
l.

Fig 2: Comparison in the search time per
object for non-reclustered and reclustered
databases, for different database sizes.

The re-clustering module
The process of organizing the data in a tree structure introduces a natural indexing on the data. The

data can be reorganized on disk according to this indexing (re-clustering). On our system, this process
takes about 80 µs/object. This technique aims to minimize the amount of memory cache swaps needed
by objectivity during the search for the nearest neighbors. Fig. 2 compares the time per object
required to search 5 nearest neighbors for all the objects, in the two cases of standard and re-clustered
database. For a small database (500,000 objects) the time is approximately the same: the data size in
this case is small (160MB) and few memory swaps are needed; for bigger databases (above 2,500,000
objects) there is a gain of 15-20% in the query execution. In general the gain can be better,
considering that in this case the initial database was already partially clustered in two (ra, dec) of the 4
dimensions used (spatial organization).

The client/server architecture.
ANN/Objectivity is currently implemented as a C++ library. To allow flexibility in the choice of

user analysis programming language, a client/server architecture implemented via Corba interfaces
has been provided. The search time per object for non-reclustered databases increases to less than 1.8
ms/object. This result has to be compared with 1.4 ms/object of Fig 2: the overhead is acceptable in
most cases, where the increased flexibility allows rapid development and data exploration.

References
[1] Annis, J., Garzoglio, G., Ruthsmandorfer, K., Stoughton, C., “Terabyte Analysis Machine”

Advanced Computing and Analysis Techniques in Physics Research 2000, ed. Bhat and Kasemann.,
www-sdss.fnal.gov:8000/~annis/Tam/tam.ps

[2] Szalay, A., Kunszt, P., Thakar, A., Gray, J., Slutz, D., “The Soan Digital Sky Survey and its
Archive” , Astronomical Data Analysis Software and Systems IX, 1999
[3] ANN Programming Manual; David M. Mount, Department of Computer Science and Institute

for Advanced Computer Studies, University of Maryland, www.cs.umd.edu/~mount/ANN/

